De-noising of dynamic magnetic resonance images by the combined application of wavelet filtering and Karhunen-Loeve Transform (KLT)
نویسندگان
چکیده
Methods The proposed approach combines 2D spatial wavelet filtering with 1D temporal Karhunen-Loeve Transform (KLT). The KLT is first applied to create a series of “eigenimages” in which important signal information is concentrated into only a few eigenimages. Then a 2D spatial wavelet filter is applied to each of the individual eigenimages. An adaptive threshold is used to define the wavelet filter strength for each of the eigenimages based on the noise variance and standard deviation of the signal, resulting in stronger filtering of the eigenimages that primarily contain noise. After wavelet filtering, the de-noised eigenimages are transformed back into image space. The performance of this filtering approach was tested over a range of wavelet filter strengths (1x to 4x adaptive threshold) for noise reduction and edge sharpness in a digital phantom. SNR improvement was also evaluated in real-time stress cine image series acquired in five normal volunteers. SNR was calculated in phantom and human images by finding the mean signal value and noise variance in a region-of-interest (ROI) within each frame. The sharpness in phantom images was measured as the distance between 20% and 80% of the total rise/fall for a moving edge.
منابع مشابه
De-Noising SPECT Images from a Typical Collimator Using Wavelet Transform
Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT ...
متن کاملRealtime Cine MRI in Mice with a Single-Shot EPI Sequence and The Karhunen–Loeve Transform
Background and Aims: Mouse models of cardiac disease play a major role in cardiovascular research but are frequently imaged with echocardiography rather than with MRI. While several groups have shown that MRI can image the mouse heart with an unparalleled level of breadth and detail, many in the cardiac research community remain concerned by the complexity and time-consuming nature of cardiac M...
متن کاملNon-rigid registration and KLT filter to improve SNR and CNR in GRE-EPI myocardial perfusion imaging.
The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted posit...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملQuantitative Assessment of Conventional and Modern De-Noising on Nuclear Medicine Images
Introduction: One of the major problems in the development of nuclear medicine images is the presence of noise. The noise level in nuclear medicine images is usually reduced by the analysis of imaging data in a Fourier transform environment. The main drawback of this environment belongs to low signal to noise ratio in high frequencies because removing noise frequencies may remove data and times...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2012